Transport of thiamine in human intestine: mechanism and regulation in intestinal epithelial cell model Caco-2.
نویسندگان
چکیده
The present study examined the intestinal uptake of thiamine (vitamin B1) using the human-derived intestinal epithelial cells Caco-2 as an in vitro model system. Thiamine uptake was found to be 1) temperature and energy dependent and occurred with minimal metabolic alteration; 2) pH sensitive; 3) Na+ independent; 4) saturable as a function of concentration with an apparent Michaelis-Menten constant of 3.18 ± 0.56 μM and maximal velocity of 13.37 ± 0.94 pmol ⋅ mg protein-1 ⋅ 3 min-1; 5) inhibited by the thiamine structural analogs amprolium and oxythiamine, but not by unrelated organic cations tetraethylammonium, N-methylnicotinamide, and choline; and 6) inhibited in a competitive manner by amiloride with an inhibition constant of 0.2 mM. The role of specific protein kinase-mediated pathways in the regulation of thiamine uptake by Caco-2 cells was also examined using specific modulators of these pathways. The results showed possible involvement of a Ca2+/calmodulin (CaM)-mediated pathway in the regulation of thiamine uptake. No role for protein kinase C- and protein tyrosine kinase-mediated pathways in the regulation of thiamine uptake was evident. These results demonstrate the involvement of a carrier-mediated system for thiamine uptake by Caco-2 intestinal epithelial cells. This system is Na+ independent and is different from the transport systems of organic cations. Furthermore, a CaM-mediated pathway appears to play a role in regulating thiamine uptake in these cells.
منابع مشابه
An Investigation into the Role of P-Glycoprotein in the Intestinal Absorption of Repaglinide: Assessed by Everted Gut Sac and Caco-2 Cell Line
The present study aimed at exploring the potential of the P-glycoprotein (P-gp) transporters as a barrier to the repaglinide (REG) epithelial permeability. In-vitro intestinal absorption models, the everted gut sac, and Caco-2 cell line, were used to study the possible role of P-gp in intestinal transport of REG. In the everted gut sacs, apparent permeability coefficients showed cargo concentra...
متن کاملAn Investigation into the Role of P-Glycoprotein in the Intestinal Absorption of Repaglinide: Assessed by Everted Gut Sac and Caco-2 Cell Line
The present study aimed at exploring the potential of the P-glycoprotein (P-gp) transporters as a barrier to the repaglinide (REG) epithelial permeability. In-vitro intestinal absorption models, the everted gut sac, and Caco-2 cell line, were used to study the possible role of P-gp in intestinal transport of REG. In the everted gut sacs, apparent permeability coefficients showed cargo concentra...
متن کاملMechanism of thiamine uptake by human colonocytes: studies with cultured colonic epithelial cell line NCM460.
Thiamine (vitamin B(1)) is essential for normal cellular functions and growth. Mammals cannot synthesize thiamine and thus must obtain the vitamin via intestinal absorption. The intestine is exposed to a dietary thiamine source and a bacterial source in which the vitamin is synthesized by the normal microflora of the large intestine. Very little is known about thiamine uptake in the large intes...
متن کاملAdaptive regulation of human intestinal thiamine uptake by extracellular substrate level: a role for THTR-2 transcriptional regulation.
The intestinal thiamine uptake process is adaptively regulated by the level of vitamin in the diet, but the molecular mechanism involved is not fully understood. Here we used the human intestinal epithelial Caco-2 cells exposed to different levels of extracellular thiamine to delineate the molecular mechanism involved. Our results showed that maintaining Caco-2 cells in a thiamine-deficient med...
متن کاملA carrier-mediated mechanism for pyridoxine uptake by human intestinal epithelial Caco-2 cells: regulation by a PKA-mediated pathway.
Vitamin B6 is essential for cellular functions and growth due to its involvement in important metabolic reactions. Humans and other mammals cannot synthesize vitamin B6 and thus must obtain this micronutrient from exogenous sources via intestinal absorption. The intestine, therefore, plays a central role in maintaining and regulating normal vitamin B6 homeostasis. Due to the water-soluble natur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 277 4 شماره
صفحات -
تاریخ انتشار 1999